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LETTER TO THE EDITOR 

Instantons and the Ising model below Tc 

M J Lowet and D J Wallace 
Department of Physics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland 

Received 10 June 1980 

Abstract. Recent series expansion estimates of the lattice king model suggest strongly that 
at fixed temperature below T, the perturbation expansion of the magnetisation as a power 
series in the external field is asymptotic. We show that the published results are in excellent 
agreement with the universal features of the essential singularity predicted by field theory 
calculations using instantons and discuss further tests of the latter. 

In an important paper Langer (1967) discusses the nature of the singularity at a 
first-order phase transition, in the contexts of a simple droplet model (for review and 
further references see Fisher (1967), Binder (1976)) and a 44 field theory. Denoting by 
H the external field which stabilises one phase or the other according as H < 0 or H > 0, 
the free energy/unit volume, F, of the droplet model of the phase which is stable for 
H > 0 is shown to have a cut along the negative H axis when analytically continued in H. 
The discontinuity across the cut, or equivalently the imaginary part of F, arises from the 
existence of a critical droplet of radius R,E l/lHl, at a local maximum of the energy, 
where the steepest-descent evaluation of the integral over droplets of all radii moves 
into the complex R plane. In the 44 model with reduced Hamiltonian 

there is a real free energy defined by the functional average over the field 4 ( x )  with 
( 4 )  > 0 for H > 0. The continuation of this free energy to H < 0 cannot yet be done in a 
controlled fashion, but Langer showed that there is an extremum of %for a solution q5c 
of the classical field equations VZ4 = -p24 + g 4 3  - H, which corresponds to a critical 
droplet in the above sense; dC(x)  is radially symmetric and changes smoothly,over a 
distance p-’ ,  between the two minima c$+ = *p /dg  at a radius R = p*/ (Hdg) .  The 
instability of this droplet solution to changes in its radius is interpreted by analogy with 
the simple droplet model, as giving rise to an imaginary part of F, through the steepest 
descent into the complex plane of the corresponding integration variable. 

It was later recognised that the same technique could be used to describe the decay 
of a metastable state in a quantum field theory (Voloshin et a1 1975, Coleman 1977, 
Callan and Coleman 1977, Stone 1977, Katz 1978, Affleck 1979). The field configura- 
tion which dominates the tunnelling process is, in the semiclassical limit, a solution of 
the classical field equations in imaginary time, i.e. precisely as above but with an extra 
spatial dimension for the imaginary time. The ‘instantons’ of the title refers to these 
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classical solutions and continues the usage of the word in (thermal or quantum) 
tunnelling processes. 

With the exception of Affleck (1979), none of these papers pushes the calculation of 
the determinant of the fluctuations as far as Langer's original paper. Generalisation of 
Langer's work to d dimensions is described in Wallace (1978) and Gunther et al(1980). 
The result of these calculations for the imaginary part of F continued from H > 0 to 
H < O i s  

I m F ( H ;  a r g H  = T )  = -B/Hlb exp -{AlHI-"[l + 0 ( H 2 ) ] } .  (2a) 

We have shown explicitly only the H dependence, in the limit H + 0. The quantities A 
and B depend upon temperature and the particular model (44 or other) and are not 
universal. In the exponential factor, the power a is universal: 

a = d - l .  ( 2 b )  
This exponential factor comes directly from the classical calculation (exp -X(&)).  The 
power b in the prefactor is also universal: 

As described in Langer (1967) and Gunther et a1 (1980) there are two basic sources of 
this power b in the calculation of the fluctuation determinant: (i) the zero modes of the 
translation invariance broken by &(x) must be handled by a transformation to 
collective coordinates and the resulting Jacobian factor gives a contribution to b ; (ii) in 
the limit H +  0- the radius of the critical droplet goes to infinity and the fluctuations 
representing the soft wobbles of the droplet away from the spherical give another 
singular factor. (The result (2c) corrects an error in Langer's paper ( d  = 3 )  and differs 
from equation (24) in Wallace (1978) because the latter does not incorporate the second 
effects above.) As regards signs, A is of course a positive quantity; the simple droplet 
model provides a reliable guide to the overall sign of Im F such that, as written in ( 2 a ) ,  
B is also positive. 

It should be stressed that equation (2) is the result of a semiclassical calculation; no 
explicit calculation of fluctuations with two or more loops has been made. This is 
potentially very serious because in the limit of interest (H  + Ow), the soft wobbles of the 
droplet surface correspond to a gapless Goldstone mode which could, through infrared 
singularities in loop integrals, wreak havoc with the prediction (2 ) .  The results of the 
paper of Gunther et a1 (1980) can be summarised as indicating that the form (2) should 
be (a) valid beyond the semiclassical limit and (b) universal. 

We contend therefore that (2) correctly represents the singularity at the tip of this 
cut in the H plane. Our aim is to show that this singularity agrees with the numerical 
results of Baker and Kim (1980), denoted hereafter by BK. Using the low-temperature 
series expansions of Baxter and Enting (1979),,and Sykes et a1 (1973, 1975) for the 
Ising model on various lattices, BK consider the magnetisation M ( T ,  H )  as a power 
series in the reduced external field H at fixed temperature T < Tc. The coefficients in 
the expansion of &? = (1 - M ) / 2  in powers of H in the form 

&?- ll?,(-2H)= 
L=O 

are reproduced in table 1 for the particular case of the square lattice and at a 
temperature exp(-4pJ) = 0.1 exp(-4pCJ). The ratios of these coefficients are plotted 
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Table 1. The estimated values A?L (equation (3a)) for the square lattice taken from Baker 
and Kim (1980). Also shown are coefficients bL and cL (equations (8a) and (9)). The 
uncertainties in the last digits are at most il, unless as shown in brackets. 

1 0.340 676 x 
2 0.198 419 X 0.291 214 (2) 
3 0.895 862 X 0.150 500 
4 0.392 154X 0.109 435 
5 0.194 603 X 0.099 248 
6 0.115696x10-4 0.099 087 
7 0.807 868 X 0.099 753 
8 0.641 871 x 0.099 3156 (2) 
9 0,569 247 X 0.098 5395 (3) 0.237 

10 0.557 617 X l o w 5  0,097 9570 (3) 0,248 
11 0.598 638 X 0.097 5968 (3) 0,208 
12 0.699 371 X l o - *  0.097 3559 (3) 0.183 
13 0,883 482 x lo- ’  0.097 1733 (2) 0.178 
14 0.120 013 x 10-~ 0.097 0292 (8) 0.177 
15 0.174 467 x 0.096 9156 (12) 0.173 (3) 
16 0.270 29 x 0.096 827 (4) 0.16 (1) 
17 0.444 58 X 0.096 754 (6) 0.16 (2) 
18 0.773 81 (2) X 0,096 697 ( 5 )  0.15 (3) 

20 0.274 54 (5) x 0.096 60 (3) 
21 0.556 8 (2) X 0.096 58 ( 5 )  
22 0.118 29 (4) x lo-* 0.096 57 (6) 
23 0.262 7 (4) X lo-’ 0.096 6 (2) 
24 0.609 (2) x lo-’ 0.096 6 (4) 

19 0.142 09 (2) X 0.096 64 (2) 0.2 (1) 

in BK against L and there is a clear linear increase with L. BK quote for large L 

ML/iGL-i = C ( L  + L O )  ( 3 b )  

with Lo = 0.1 f 0.2. They conclude that the power series expansion in H has zero radius 
of convergence and H = 0 is a singular point for T < T,. 

In order to compare expressions (2) and (3), we follow Gunther et a1 (1980) by using 
the Cauchy integral formula with the contour enveloping the cut: 

1 Im F(arg H’ = T )  dHl,  
F(H) =-I T HI-H (4) 

discarding the contour at infinity. (The argument is not affected if a finite number of 
subtractions is required.) Formally expanding in H,  following the convention in 
equation (3a ) ,  we obtain 

F(H)- 1 FL(-2H)L 
L = O  

where 

1 
F L  =- Io dH’(H’)--(Lcl) Im F(arg H’ = T). T(-2)L --a3 
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Substituting ( 2 a )  into (5) gives 

The corrections of order L("-')/" come from the order H 2  in (2a)-they are asymp- 
totically negligible according to (2b)  only in two and three dimensions (a  = 2 gives only 
a change in the unknown quantity B) .  (For a review of this and other approaches to 
high-order estimates see e.g. Wallace (1978), Zinn-Justin (1979).) Derivatives of (6) 
give the growth of other quantities of interest, e.g. M = aF/aH implies 

li2L = (L + l)FL+l ( L  > 0) 

Note (i) that the connection between imaginary part and asymptotic behaviour is 
erroneously stated in BK and (ii) the simple droplet model is indeed a reliable guide to 
the signs of the coefficients (B  > 0). 

In comparing (7) with the results from the Ising model in table 1 ,  since A and B are 
non-universal and unknown a priori, we follow BK and take ratios of successive 
coefficients which should grow, according to (7), as L1/a,  with the unknown corrections 
now of order L-"", because of cancellation. For d = 2 (a = b = l ) ,  we plot in table 1 

bL = A & / ( L A ~ ~ - ~ ) ,  

b, = (1/2A)[1+ (1 - bjL-'+ O(L-')]. 

which should behave according to (7) as 

( 8 b )  

The coefficient Lo of (3b) is predicted to be zero because b = 1 in d = 2. The O(L-') 
correction can also be seen in the numerical results. We show in table 1 the coefficients 

CL -(bL - bL-1)L2(L - 1)'/(2L - 1) (9) 

which should tend to the constant coefficient of 1/L2 in bL as L + 00; they also seem to 
stabilise well for L > 10. The numerical results thus seem to agree remarkably well with 
the structure (2 )  in two dimensions. 

Corresponding tests of ( 2 )  can be made for other lattices in two dimensions, in other 
dimensions and for other thermodynamic quantities. For example, for d = 3, the 
expansion in even powers of H in equation ( 2 )  predicts 

A&/(L1/ '~L- .~)  = (8A)--'''[l +EL-' + O(L-')] (d  = 3) .  (10) 

As remarked in Giinther er a1 (1980), the coefficient of the O(L-') term may be correct 
only above a roughening temperature, below which the soft wobble effects may be 
absent. (A different temperature-dependent phenomenon is also claimed in Domb 
(1 976).) 

For d 3 4, the corrections of order H' in ( 2 a )  are not negligible since 2 - a < 0, and 
must be retained explicitly in the integral (9, which can then be evaluated for large L by 
steepest descents. The result is 

( 1  1) li2L/(L1'31i2L-1) = $(3A)-'I3[1 - DL-'I3 +$L-'+ O ( I , - ~ / ~ ) ]  

where D is non-universal, depending on the relative coefficients of H - 3  and H-' in the 
exponential in ( 2 a ) .  
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Further tests are possible if the series expansions can be used to give reliable 
coefficients in the critical region, particularly in three or four dimensions. Explicit 
expressions for universal amplitudes for coefficients of H L  for low L can be obtained 
from the scaling Ising equation of state, which is known to order c3  (Wallace and Zia 
1974) in 4 - E  dimensions; scaling behaviour for high L can be estimated from the form 
(2) improved by the renormalisation group equation for the free energy as in BrCzin et a1 
(1976) or (Houghton and Lubensky 1980) as in Rudnick and Nelson (1976). 

It is inappropriate to end on remarks concerning behaviour in the critical region. 
The important feature of this paper is the rather strong evidence it presents for universal 
features of the essential singularity at a first-order phase transition. It will be instructive 
to determine the extent of this apparent universality. 

D J W thanks M E Fisher and D S Gaunt for useful discussions. 
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